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Abstract. Achieving high sample efficiency is a critical research
area in reinforcement learning. This becomes extremely difficult in
multi-agent reinforcement learning (MARL), as the capacity of the
joint state and action space grows exponentially with the number
of agents. The reliance of MARL solely on exploration and trial-
and-error, without incorporating prior knowledge, exacerbates the is-
sue of low sample efficiency. Currently, introducing symmetry into
MARL is an effective approach to address this issue. Yet the concept
of hierarchical symmetry, which maintains symmetry across different
levels of a multi-agent system (MAS), has not been explored in ex-
isting methods. This paper focuses on multi-agent cooperative tasks
and proposes a method incorporating hierarchical symmetry, termed
the Hierarchical Equivariant Policy Network (HEPN) which is O(n)-
equivariant. Specifically, HEPN utilizes clustering to perform hier-
archical information extraction in MAS, and employs graph neural
networks to model agent interactions. We conducted extensive exper-
iments across various multi-agent tasks. The results indicate that our
method achieves faster convergence speeds and higher convergence
rewards compared to baseline algorithms. Additionally, we have de-
ployed our algorithm in a physical multi-robot system, confirming
its effectiveness in real-world environments. Supplementary materi-
als are available at https://yongkai-tian.github.io/HEPN/.

1 Introduction

In recent years, the development of multi-agent reinforcement learn-
ing (MARL) has achieved notable success in sequential decision-
making tasks, such as multiplayer games [16, 29, 32], biology [33],
traffic control [2, 39], and multi-robot systems [3, 4, 8, 18]. However,
despite its wide applicability and success, MARL continues to con-
front a persistent challenge of low sample efficiency. As the number
of agents increases, the capacity of the joint state and action spaces
expands exponentially. Consequently, MARL requires a substantial
amount of samples to gradually optimize policy in these large state-
action spaces, leading to the issue of low sample efficiency [20, 27].
This problem primarily arises because MARL relies solely on trial-
and-error, neglecting the use of prior knowledge.

Enhancing the sample efficiency of MARL fundamentally entails
achieving more effective learning with limited interactions [34]. Inte-
grating prior knowledge can significantly boost sample efficiency by
reducing the size of the solution space, thereby accelerating the train-
ing process [27]. Prior knowledge in multi-agent systems (MAS) pre-
dominantly refers to symmetries, which are typically implemented
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Figure 1. Example of rotation hierarchical equivariance in MAS. Rotating
a system, whether at low or high level, the actions of agents also rotate.

through three approaches: data augmentation, loss function design,
and network architecture design [12]. We refer to the first two meth-
ods as soft constraint method, while the third is termed hard con-
straint method. Data augmentation leverages symmetries to gener-
ate additional training data, thereby reducing the number of interac-
tions with the environment during training [34, 35, 36]. Furthermore,
researchers have introduced symmetry biases into loss functions to
guide models in learning the symmetries inherent in MAS, thus ac-
celerating the training process. Additionally, network structures can
be designed to inherently possess symmetries, such as permutation
invariance [11, 15] and rotational symmetry [28].

However, soft constraint methods, which rely on guidance from
generated data or loss functions to learn the intrinsic properties of
the system, are heavily dependent on the diversity and quality of data.
Furthermore, both soft and hard constraint methods overlook the in-
herent hierarchical structure within MAS. As shown in Figure 1, we
illustrate the hierarchical structure presented in MAS. By modeling
the MAS as a graph, agents with similarities can be regarded as a sub-
system, forming a high-level system. In this high-level system, more
efficient message passing and better learning of global information
can be achieved [10], which are crucial for improving cooperation
among agents [7]. The current limitation is that messages can only
be passed between agents and cannot be inferred and aggregated in a
hierarchical manner, which poses particular problems for multi-agent
cooperative tasks. Therefore, how to utilize the inherent hierarchical
structure and its symmetry within MAS remains a challenge, partic-
ularly crucial for multi-agent cooperative tasks.

In this paper, we focus on multi-agent cooperative tasks, where the
absence of prior knowledge and hierarchical structure leads to ineffi-
cient learning. We propose a novel policy network structure based on
Symmetric Dec-POMDP (S-Dec-POMDP) [34] called the Hierarchi-



cal Equivariant Policy Network (HEPN) to achieve sample-efficient
learning. Firstly, inspired by equivariant hierarchical graph neural
networks [10], we design HEPN to explore and learn the hierarchi-
cal structure of MAS while ensuring strict symmetry properties. Fur-
thermore, inspired by structural entropy [14], we propose partition
loss to better learn the hierarchical structure within MAS. Finally,
we validate the effectiveness of our algorithm on various multi-agent
cooperative tasks including Rendezvous, Pursuit, and Resource Col-
lection and also conduct verification in real world environments. The
contributions of this paper can be summarized as follows:

e We propose the Hierarchical Equivariant Policy Network (HEPN),
which utilizes the hierarchical symmetry in MAS to enhance the
efficiency of MARL algorithms.

e We propose a partition loss aimed at better uncovering the hierar-
chical structure within MAS.

e We evaluate the performance of HEPN across several multi-
agent cooperative tasks. Experimental results indicate that HEPN
achieves faster convergence speeds and higher convergence re-
wards, thereby validating its effectiveness.

e We deploy HEPN in a physical multi-robot environment, confirm-
ing its effectiveness in real world.

2 Related Work
2.1 Hierarchy in MARL

In the realm of MARL, there has been some explorations in lever-
aging hierarchical structures of systems to enhance effectiveness of
algorithms. In HAMA [22], the authors design a hierarchical graph
attention network to model the hierarchical relationships between
agents in either cooperative or competitive scenarios. SISA [37]
introduces an unsupervised, adaptive hierarchical state clustering
method. This method minimizes structural entropy to cluster agent
states hierarchically, effectively filtering out irrelevant environmen-
tal information. In the domain of mean-field reinforcement learning,
HMF [31] decomposes the entire population into multiple clusters
and coordinates learning between two levels to optimize coordination
in large-scale MAS. However, a common drawback of these methods
is the lack of prior knowledge, requiring extensive trial-and-error,
thereby leading to problems of low sample efficiency.

2.2 Symmetries in MARL

Figure 1 illustrates the concept of symmetry, showing that as the
state rotates, the agents’ directions of movement correspondingly ro-
tate as well. Incorporating symmetry is an effective way to enhance
sample efficiency in MARL. Recent research on incorporating sym-
metry includes three methods: data augmentation, loss function de-
sign, and network architecture design. The first two methods are re-
ferred to as soft constraint methods. The network architecture design
is termed as hard constraint method. As for soft constraint methods,
techniques like ESP incorporates symmetry into MARL algorithms
by generating additional data and symmetry consistent loss through
rotational symmetry [34]. PSE is an extension of ESP under im-
perfect symmetry conditions [35]. AdaptAUG selectively identifies
beneficial data augmentations to improve sample efficiency and sta-
bility [36]. Regarding hard constraint methods, MF-PPO and HPN
have designed network structures that ensure permutation invariance
[11, 15]. Though numerous network structures with equivariant prop-
erties have been proposed [5, 6, 10, 23, 25, 26, 30], only Multi-Agent
MDP Homomorphic Networks [28] have achieved the embedding

of rotational symmetry in MARL. Despite these advancements, the
utilization of hierarchical symmetry has not yet been explored in
MARL. To our knowledge, this paper is the first to use hierarchical
equivariant graph neural network to model MAS, allowing for the
discovery of the system’s hierarchical structure while incorporating
strict symmetry.

3 Preliminaries
3.1 Notations

We model the multi-agent system as a graph G, which includes nodes
V representing /N agents and edges £ representing the connections
between agents. The observations consist of equivariant features
X and scalar features (). Equivariant features refer to a charac-
teristic that maintains equivariance under geometric transformations,
denoted as X© =[xV ..., "] where X € RN*"*M Thig
represents the combination of the equivariant features of N agents,
with each agent characterized by M n-dimensional features, such as
velocity v; € R™ and position z; € R™ leading to Xi(()) = [vi, ] €
R™*2, Scalar features, on the other hand, refer to a characteristic
that remains invariant under geometric transformations, denoted as
HO =1, .., Hg\?)}. Here, H©) € RN*P represents the com-
bination of the scalar features of [NV agents, each containing D dimen-
sions, such as distances and other scalar measurements. The edges £
are related to the adjacency matrix A which is constructed based on
geometric distances. In subsequent sections, we will abbreviate the
complete information of a system, namely { X', #{, A}, using the no-
tation G when necessary like g = {X(O), ’H(O), A}

3.2 Dec-POMDP

A fully cooperative multi-agent task can be described as a decentral-
ized partially observed Markov decision processes (Dec-POMDP)
[17], which is defined as a tuple (NS, A, O, R, T,U,~v). N =
{1,..., N} is the set of agents. S represents the set of environ-
ment state, and s° € S is the state at step t. A = x;cnrA; denotes
the joint action set where A; is the set of actions available to agent
i. Similarly, O = X;enO; is the set of joint observations where
O; is the set of observations available to agent i. T’ (s”l | st, at)
denotes the transition probability from s’ to s'*! given the joint
action @’ = (af,...,aly) € A by all n agents at step ¢. The
subsequent observation o'™' is given by U(o'™* | a',s't). R
is the immediate reward function. The discount factor is denoted
by ~y. Each agent employs the policy 7o (af | of), parameterized
by 6, to generate action a! based on local observation o! at step .
The goal is to optimize the expected discounted cumulative reward

J(0) = Eue ot [, R (s",a")].

3.3 Symmetric Dec-POMDP

By introducing symmetry constraints into Dec-POMDP, we obtain a
subclass known as Symmetric Dec-POMDP (S-Dec-POMDP) [34].
Through S-Dec-POMDP, we can leverage the embeddings of inher-
ent system symmetries to optimize policies in MARL. In this paper,
we aim to propose a policy network Fugpn (-) that ensures O(n)-
equivariance. It can be formalized as follows:

FHEPN (’H(O),EgX(O),A> =Lya,

where L, is the transformation for equivariant features and actions
associated with group g € O(n). H® and X are the initial scalar
and equivariant feature of agents defined in section 3.1.
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Figure 2. The overall framework of the proposed HEPN consisting of three main modules: 1) Equivariant Cluster Module, used to extract the hierarchical
structure in multi-agent systems, clustering agents with similarities into a group to serve as agents in the high-level system; 2) Equivariant Remap Module, used
to remap information from the high-level system back to the low-level system; 3) Action Module, used to generate the final action output.

3.4 Equivariant Graph Network

Given the input graph G {x®© 1O A}, the I-th Equiv-
ariant Graph Network (EGN) layer is used for message pass-
ing and aggregation within the graph to generate new features
gD — (xU+D 3 U+D AL while maintaining equivariance
[23]. The whole procedure can be formalized as follows:

2
Mij = Pe (HX-LU) - Xj(l) H aH-El)a Hg‘l)) s

(I+1) _ W )
Hi - ¢h (’Hl ’ZjEN(i) m”> ,
: Q)
X .
WV (5)] ZiEN(i) i Om(mij),

where ||-|| represents the column-wise I» distance, A(i) denotes the
set of neighboring agents of agent 4, and [N (z)| denotes the number
of neighbors. ¢e(+), ®n(+), P (-) and ¢m, (-) are all Multi-Layer Per-
ceptrons (MLP). In subsequent sections, we denote EGN as:

%(L),X(L) _ FEGN(H(O),X(O)7A),

where L represents that the network has L layers. For arbitrary or-
thogonal matrix £, € O(n), Fecn satisfies:

HD £, = Faan(H, £,x20 4).

Xz’(lH) = ¢w(H§l))Xi(l) +

4 Method

In this section, we will introduce the HEPN. The complete network
architecture is shown in Figure 2. The overall procedure of the pro-
posed HEPN is formulated as follows:

Gl = Foon (9), )
Gmop = Fort (G0 )+ @
a = Fact (67, Gnap) - 3)

Here, Equation (1) extracts the hierarchical structure of MAS by em-
ploying the Equivariant Cluster Module Frcam(+) to cluster similar
agents in the low-level system G ), treating these clusters as agents
in the high-level system gfl?;h. Equation (2) utilizes the Equivariant
Remap Module Frrwm(-) to recover the features from gfl?éh back to
the low-level system Gmap. Equation (3) employs the Action Mod-
ule Facr(+) to generate the final action output. The implementation
details of HEPN can be found in supplementary materials.

4.1 Equivariant Cluster Module

The primary purpose of this module Frcwm(+) is to cluster agents
with similarities in the low-level system into a group, which serves
as an agent in the high-level system. This module consists of EGN
and Node Feature Cluster. Given the initial low-level system G ©) —
{x O 4, A}, the entire process can be described as follows:

HE 20 = Foox (1O, 20, 4) @)
Gih = Farc (6%). (5)

Equation (4) is EGN described in section 3.4 which repeats L times.
Due to the presence of the message passing mechanism in EGN,
agents in the low-level system have acquired more global informa-
tion compared to their initial state. Equation (5) operates on the up-
dated system G©) = {XB) H ) A} and utilizes the Node Fea-
ture Cluster Fnrc(+) to coarsen the low-level system into an abstract
high-level system gf}?g’)_h ={x igéh, %§§;}.» Anign } with K agents,
where K < N. Furthermore, we use Partition Loss to optimize the
clustering results.

Node Feature Cluster. The Fxrc(-) is used for clustering agents
and generating high-level features to construct the high-level system,
which can be represented by the following four equations:

pi = Softmax (HEL)) , (6)
N

Xlg?lzigh = ZPikXi(L)7 0
i=1
N

Hiohign = D_ it ®)
i=1
T

Apigh = PT AP, ©))

where p; denotes the probability of agent 7 belonging to each clus-
ter, and P = [pir]nx K represents the probability matrix. HEL) and
X;L) are scalar and equivariant features of agent ¢, respectively. First,
we calculate the probability using the updated features in the low-
level system, which is achieved through a softmax function shown in
Equation (6). Next, each group is considered as a node in the high-
level system, whose features are the weighted sum of the features in
the low-level system as shown in Equations (7) and (8). The weights
are provided by the P. Finally, as illustrated in Equation (9), we use
P to compute the high-level adjacency matrix Apigh.



Partition Loss. To enhance the clustering effectiveness within the
Equivatiant Cluster Module, inspired by structural entropy [14], we
propose a partition loss function. Following Equation (9), we define
the edge weighs w;; as:

; H@),H(.“) 11 ifey €&,
wi]- _ {COS_S’Lm( i j I e j 7 (10)

0 others

where cos_sim(-) representing the cosine similarity. Suppose that
{V1, Va2, -+ ,Vc} is a partition of nodes V. We define the partition
loss of G by the partition as:

c c
_ vol(Ve) _ Je vol(Ve) + ge
loss = g - CE:l ol(G) log, , (1D

c vol(G)

where vol(G) = 37, .\ ,; wij is the volume of G, vol(Ve) =

i jeVy ity Wid is the volume of V., m. is the number of edges
whose endpoints are both within V., and g. is the sum of edge
weights with exactly one endpoint in V.. Minimizing this loss en-
sures optimal graph partitioning. The first term encourages the maxi-
mization of the total edge weight within each cluster. This optimiza-
tion promotes greater cohesion and homogeneity within individual
clusters, enhancing the similarity among vertices within the same
cluster. The second term focuses on the inter-cluster edges and aims
to minimize the ambiguity at cluster boundaries. Reducing this term
results in fewer and weaker connections between distinct clusters,
ultimately emphasizing the demarcation between them. The overall
loss function of HEPN is the sum of the MARL algorithm’s loss and
partition loss.

c=1

4.2 Equivariant Remap Module

In this section, we delve into the Equivariant Remap Module, which
aims at remapping the information from high-level system back to
the low-level for subsequent action generation. It comprises two
parts: EGN and Node Feature Remap. Given the initial state of the
high-level system gﬁ?g)h ={x ](j?éh, ’H}(]?;h, Anign }, the whole pro-
cess is formulated as:

%ﬁfg)h, XfﬁLg)h = FEGN (’H}(g;h, Xﬁ?;h, Ahigh) ; (12)
Gmap = Farw (Gi10,) (13)

where Frcn(-) is EGN described in section 3.4. Similar to the
Equivariant Cluster Module described in section 4.1, the state of the
high-level system first undergoes an update through the EGN. Since
the agents in the high-level system represent a category of agents in
the low-level system, their updates through a message passing mech-
anism can acquire more global information compared to performing
the same operations in the low-level system, achieving more efficient
feature updates. Then, Node Feature Remap Frr (-) will project the
features from the high-level system gﬁfg?h ={x l(ﬁLg)h, ’HﬁiLg)h, Anign }
back to the low-level system Grap = { X map, Hmap, 4

Node Feature Remap. The Node Feature Remap aims to remap
the high-level features to the low-level. The process is formulated as:

K L
Xi,map = Zk:l pikX;é’h)igh, (14)

K
_} : (L)
Hi,map = b1 pika,high' (15)

The high-level agents remap the features back to the agents in the
low-level system through a weighted summation using weights pro-
vided by the columns of the probability matrix P, resulting in the
mapped system Gmap = { X map, Hmap, A}

4.3  Action Module

In this section, we introduce the last module of HEPN, the Action
Module Fact(+), which is used to generate actions for the agents. It
combines features from both G () and Gmap to determine the actions
for each agent, as given by:

2

~ ~ 2
Hi,out = ¢o ( Xz 5 Xi,map 7Hi7Hi,rnap> 5 (16)
a; = (Xi,map - XI(D)) H'i,ouh (17)

where )E'Z = Xi<0) — X, and X is the average of the features of agent
4+’s neighbors. The calculation of )&-,map can be analogously derived
from X;. ¢o(+) is implemented as MLP. Equation (16) defines H; out,
the scaling factor for computing actions, which integrates the equiv-
ariant features and scalar features from both G(*) and Gmap- Equation
(17) details how the action a; is computed. The action of agent ¢ is
derived from the difference in equivariant features between G () and
Gmap, and is scaled by #; out. The difference in equivariant features
determines the direction of the action while the scaling factor de-
termines the magnitude of the action. This combination ensures that
the generation of actions maintains equivariance while incorporating
sufficient information.

4.4 Theoretical Analysis

In this section, we analyze the equivariance properties of our method,
HEPN, as described in the following theorem and corollary.

Proposition 1. For arbitrary orthogonal matrix Ly € O(n), the
modules of our network satisfy:

1. The Node Feature Cluster Fxrc(-) is equivariant:
L4950, = Frre (£,97).
2. The Node Feature Remap Fnvr(+) is equivariant:
L4Gmap = Frrr (£,980,) -
3. The Action Module Fact(-) is equivariant:
Loa = Facr (cgg“”, £4Gmap ) -

The detailed proof is provided in the supplementary materials.
Based on Proposition 1 and section 3.4, we can conclude that
FeceMm(+) and Fgrum () is equivariant:

Corollary 1. For arbitrary orthogonal matrix L4 € O(n), the mod-
ules of our network satisfy:

1. The Equivariant Cluster Module Frcw(+) is equivariant:
£,G80, = Foou (£,9°).
2. The Equivariant Remap Module Frrwm () is equivariant:
£oGmap = Fornn (L5450, )
gJmap ERM 9“high | *

Based on Proposition 1 and Corollary 1, we can conclude that our
entire network Fugpn (-) is O(n)-equivariant:

Corollary 2. For arbitrary and orthogonal matrix L4 € O(n), our
whole network HEPN Fugpn (+) satisfies:

Lqa = Fuepx (’H(O), LX), A) .
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Figure 3. The learning curves of HEPN, MLP, GraphSAGE, ESP and GCS across three tasks are presented. Each experiment is conducted five times with
different random seeds to ensure the reliability of the results.

5 Experiments
5.1 Environmental Setting

Baselines. Our HEPN focuses on incorporating symmetry into
MARL algorithms. We use Exploiting Symmetry Prior (ESP) [34]
as a baseline, as it is the most recent and effective method in this
field. Additionally, given that MLP is commonly used as policy net-
works in MARL, it also serve as one of our baselines, with MAPPO
[32] selected for our paper. MARL with Graph Neural Networks, like
GraphSAGE [9, 24] and graph-based coordination strategy (GCS)
[21], due to their relevance in modeling interactions among agents,
are also selected as baseline algorithms.

LN ® ’ ®

’ Prey

Predator

@

Resource

(¢) Resource Collection
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Obstacle Agent
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Figure 4. The simulated tasks considered in the experiments.

Tasks. We evaluate the superiority of our method through experi-
ments conducted on three multi-agent continuous cooperative tasks:
1) Rendezvous, where agents autonomously gather without a prede-
fined target point; 2) Pursuit, where multiple predators attempt to
chase a faster-moving prey; 3) Resource Collection, which requires
agents to mine all the resources from multiple resource pools while
avoiding collisions with other agents and obstacles [1]. Figure 4 il-
lustrates these tasks. The key hyperparameters of the algorithm are
consistent with those in [38]. More details about the experimental
setting can be found in the supplementary materials.

5.2 Main Results

In this section, we present and analyze the main results of the ex-
periments conducted under the environmental settings described in
Section 5.1. The number of agents in every task is set at 10. The ex-
perimental results for each algorithm represent the average of five
different random seeds, as shown in Figure 3. The results indicate
that when our HEPN is applied to the MARL algorithm, it achieves
faster convergence speeds and higher rewards.

Rendezvous. In Rendezvous task, as shown in Figure 3(a), the
HEPN exhibits a marked superiority in achieving higher convergence
rewards. It also demonstrates a modest improvement in terms of con-
vergence speed compared to other methods. Notably, ESP emerged
as the most effective algorithm within the baselines. This highlights
the benefits of leveraging the intrinsic symmetry present within the
system. Nonetheless, the gap in reward outcomes between ESP and
HEPN suggests that the effectiveness of methods employing soft
constraints generally falls short of those utilizing strategic network
architecture designs. Moreover, both GCS and GraphSAGE outper-
form the standard MLP, affirming the advantage of incorporating
graph structures into MARL algorithms.

Pursuit. In Pursuit task, the prey adopts a Voronoi strategy as de-
tailed in [40]. Our target is to train agents to chase the prey. As we can
see in Figure 3(b), HEPN distinctly surpasses all other baseline algo-
rithms in terms of both convergence speed and reward in this task.
ESP underperforms relative to the standard MLP, potentially due to
its inability to adeptly handle the environmental uncertainties intro-
duced by the prey’s movements. This suggests that ESP struggles
with more complex tasks. Both GraphSAGE and GCS show faster
convergence speeds than ESP and are comparable to the standard
MLP, indicating that the use of graph structures can mitigate the un-
certainty in system. However, the inferior convergence rewards sug-
gest that despite graph structure capturing the interactions between
agents, they fail to sufficiently generalize the entire environmental
state in the absence of inherent symmetry and hierarchical structure
which may diminish performance.

Resource Collection. In Resource Collection, we set three dis-
tinct resource pools, which allows for the possibility that multiple
agents might converge on the same pool. The insights from Figure
3(c) demonstrate that the HEPN significantly outperforms the base-
line methods. This advantage is attributed to HEPN’s ability to ef-
ficiently direct agents toward resource pools while simultaneously
avoiding collisions. The ESP method shows only a slight improve-
ment over the standard MLP, and its reward at convergence is con-
siderably lower than other algorithms. This observation suggests that
data augmentation methods might not be ideally suited for complex
tasks. On the other hand, both GraphSAGE and GCS display slower
convergence speeds. While their final reward levels do surpass those
of both the standard MLP and ESP, they still fall short of reaching
the high performance levels exhibited by HEPN. These results fur-
ther confirms the advantages of integrating intrinsic symmetry and
hierarchical structures within algorithms to optimize performance.
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Figure 5. Sensitivity of the partition loss coefficient across three tasks. Each point represents the average reward value at the early stage or the convergence
stage of training.

5.3 Ablation Study

In this section, we demonstrate the results of ablation studies on
the hierarchical structure and partition loss of HEPN across three
tasks: Rendezvous, Pursuit, and Resource Collection. These exper-
iments are designed to assess the effectiveness of different compo-
nents within the method.

Table 1. Ablation study results for the hierarchical structure across three
tasks. Each value represents the average convergence reward of the model.

Task
Model Rendezvous Pursuit Collection
HEPN -15.2 -43.1 2319.2
EPN -16.3 -51.6 2168.4
HPN -29.7 -56.1 2137.9
GPN -33.0 -58.5 2103.0

Effectiveness of Hierarchy and Equivariant. We compare four
different variants: 1) HEPN, which includes all components de-
scribed in this paper; 2) EPN, which removes the hierarchical struc-
ture; 3) HPN, which omits the equivariance; 4) GPN, where both
the hierarchical structure and equivariance are removed, essentially
being a basic GNN, We use the results of GraphSAGE here. The
performances of these variants, as shown in Table 1, indicate that
the removal of hierarchical structures results in a slight decrease in
performance, which intensifies with increasing task complexity. The
removal of equivariance leads to a significant performance decline,
and the basic GNN model performs the worst. Thus, it can be con-
cluded that the incorporating of hierarchical structures greatly assists
in complex tasks within multi-agent systems, while the consideration
of equivariance significantly enhances algorithmic performance.

Effectiveness of Partition Loss. We selecte a range of loss func-
tion coefficients [0, 0.01, 0.05, 0.1, 0.5, 1] and conducte experiments
in three tasks. The experimental results are illustrated in Figure 5,
where we have selected the reward values from both the early and the
convergence stage of training. Specifically, we have chosen 150k and
390k, 300k and 2100k, and 300k and 2100k steps as representative of
the early and convergence stage of the three tasks, respectively. From
Figure 5, it can be observed that in all three tasks, the use of partition
loss effectively enhances the reward values of the algorithm, both in
early stages and convergence stages of training. Notably, the signif-
icant improvement in reward values during the early stages suggests
that partition loss can effectively accelerate the convergence speed.
However, it is important to note that the coefficient of partition loss is

Table 2. This table displays the impact of varying numbers of agents on
different tasks, as expressed by the mean convergence rewards of the models.

Task Num Model
HEPN MLP ESP SAGE GCS
5 -21.8 -29.9 -29.3 -26.1 -35.8
Rendezvous 15 -24.1 -33.9 -34.7 -33.1 -34.7
20 -24.6 -38.7 -35.0 -33.9 -40.0
30 -25.4 -34.9 -35.8 -35.3 -39.2
5 -67.1 -73.3 -79.6 -73.1 -75.3
Pursuit 15 -36.6 -51.6 -48.3 -47.4 -59.1
20 -30.3 -51.1 -47.0 -48.5 -69.2
30 -25.3 -55.9 -53.4 -47.7 -67.5
5 22954 21839 1989.5 21054 2283.0
Collection 15 2209.9 12739 1552.8 1330.7 1106.7
20 2295.8 6033 1151.3  795.8 337.9
30 22977 10544 7673 966.5 146.9

not necessarily better when larger. For example, when the coefficient
exceeds 0.05, a decline in the early reward is observed in the Ren-
dezvous task, with similar phenomena occurring in the Pursuit and
Resource Collection as well. This indicates the need for selecting ap-
propriate partition loss coefficients for different tasks. Nevertheless,
it is noteworthy that the coefficient of partition loss does not signif-
icantly affect the final convergence rewards. In summary, the exper-
imental results demonstrate that partition loss, by optimizing the re-
sults of clustering, effectively enhances both the convergence speed
and the final convergence rewards. We also find that the convergence
speed of the algorithm shows some sensitivity to the partition loss
coefficient, but its impact on the convergence rewards is minimal.

5.4 The Impact of Different Numbers of Agents

In this section, we explore the performance of different models with
varying numbers of agents, 5, 10, 15, 20 and 30, as shown in Ta-
ble 2. The numbers represent the average convergence rewards for
each model. The results also demonstrate the effectiveness of HEPN:
1) In Rendezvous, HEPN consistently performs the best across all
agent numbers and shows higher stability, whereas other models ex-
hibited performance declines with increasing numbers; 2) In Pursuit,
HEPN’s performance became more pronounced as the number of
agents increased, highlighting its effectiveness in large-scale com-
plex tasks. 3) In Resource Collection, all algorithms except HEPN
showed significant performance decline, further validating the effi-
cacy of our method in handling complex, large-scale tasks.



(a) Rendezvous

(b) Pursuit

(¢) Resource Collection

Figure 6. Demonstration of the physics environments across three tasks.

Table 3. Behavioral analysis results of different algorithms on three tasks: The inter-agent distances at different stages for Rendezvous; The nearest, farthest
and mean agent-to-prey distances for Pursuit; The agent-to-pool distances at different stages for Resource Collection.

| Rendezvous Pursuit Resource Collection
Model | 50-step 100-step 200-step |  Nearest Farthest Mean |  50-step 100-step 200-step
HEPN 1571.3 71.7 1.1 12.5 47.8 27.5 114 3.0 1.6
MLP 2957.5 2119.0 722.6 16.2 51.8 323 21.5 10.2 5.6
ESP 2835.3 2276.7 592.6 16.7 51.5 32.1 12.3 10.3 74
GraphSAGE 2987.0 1937.1 414.5 16.8 50.6 30.8 25.8 12.8 1.8
GCS 2634.5 1653.5 227.2 15.5 52.2 31.2 23.9 12.36 5.6

5.5 Behavior Analysis

In this section, we analyze the behavior of models trained and con-
verged using different methods arcoss three tasks. For each task eval-
uation, we set the episode length to 300, by which point all models
can complete the task. We assess the performance using distance as
a metric, with smaller distances indicating better performance:

Rendezvous. We use the sum of distances between all pairs of
agents as a metric, termed inter-agent distance. We record the mean
inter-agent distances at the 50th, 100th, and 200th time steps across
all three tasks. As shown in Table 3, our HEPN model performs bet-
ter at all three stages, having completed the Rendezvous task by the
200th time step, while the other algorithms are far from completion.

Pursuit. We use the distance between agents and the prey, denoted
as agent-to-prey distance, as the evaluation metric. Given that the
prey always tries to escape, we assess performance using the near-
est, farthest, and mean distances to the prey throughout the whole
episode. The data in Table 3 shows that agents trained with HEPN
are more effective at encircling the prey.

Resource Collection. We use the mean distance between the
agents and the resource pools as a metric, referred to as agent-to-pool
distance. We assess algorithm performance using the agent-to-pool
distances at the 50th, 100th, and 200th time steps. The results indi-
cate that HEPN-controlled agents can reach the resource pool faster.

6 Demonstration on Robots

In this section, we evaluate the performance of algorithms through
a Sim2Real approach. We have deployed our trained models in a
real-world setting to assess their effectiveness across all three tasks.
Specifically, Limo robots are employed as the task agents, which are
controlled via the Robot Operating System (ROS) [13] and supple-
mented with a NOKOV motion capture system to get real-time envi-
ronment states. Figure 6 provides a schematic of the actual applica-
tion scenario. The configurations for the tasks are as follows: 5 agents
for Rendezvous, 4 agents chasing 1 prey for Pursuit, and Resource

Collection involves 5 agents and 2 resource pools. To accurately as-
sess the performance of algorithms in a real-world environment, we
compare HEPN along with the best-performing baselines for each
task. The reward function is composed of the cumulative distance of
all agents, along with auxiliary training regularization terms which
do not intuitively reflect the algorithm’s performance in real-world
experiments. Therefore, we have chosen the cumulative distance as
the evaluation metric. The results shown in Table 4 demonstrate that
our method can complete tasks faster, thereby proving the effective-
ness of HEPN in real-world scenarios. Additional details and video
are provided in Supplementary Materials.

Table 4. Performance results of the methods in real-world tasks.

Task Model
HEPN Best Baseline
Rendezvous 659.4 759.9
Pursuit 1337.7 1531.7
Collection 823.9 1098.5

7 Conclusion

This paper aims to address the issue of low sample efficiency in
MARL. We introduce a novel method called Hierarchical Equiv-
ariant Policy Network (HEPN), which leverages the intrinsic hier-
archical symmetry within MAS to significantly reduce the need for
policy exploration in MARL, thereby enhancing learning efficiency.
Additionally, we propose a partition loss to more effectively cluster
agents, enhancing the overall performance of the algorithm. Experi-
mental results demonstrate that our method significantly outperforms
existing techniques in terms of convergence speed and rewards. The
applicability and superiority of our approach are further validated in
real-world physical scenarios. This work illustrates a potential path-
way for enhancing algorithm efficiency by utilizing prior knowledge.
In the future, we will explore the application of our method in other
reinforcement learning domains [19].
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